Operational real - time GPS - enhanced earthquake early warning
نویسنده
چکیده
Moment magnitudes for large earthquakes (Mw ≥7.0) derived in real time from near-field seismic data can be underestimated due to instrument limitations, ground tilting, and saturation of frequency/amplitude-magnitude relationships. Real-time high-rate GPS resolves the buildup of static surface displacements with the S wave arrival (assuming nonsupershear rupture), thus enabling the estimation of slip on a finite fault and the event’s geodetic moment. Recently, a range of high-rate GPS strategies have been demonstrated on off-line data. Here we present the first operational system for real-time GPS-enhanced earthquake early warning as implemented at the Berkeley Seismological Laboratory (BSL) and currently analyzing real-time data for Northern California. The BSL generates real-time position estimates operationally using data from 62 GPS stations in Northern California. A fully triangulated network defines 170+ station pairs processed with the software trackRT. The BSL uses G-larmS, the Geodetic Alarm System, to analyze these positioning time series and determine static offsets and preevent quality parameters. G-larmS derives and broadcasts finite fault and magnitude information through least-squares inversion of the static offsets for slip based on a priori fault orientation and location information. This system tightly integrates seismic alarm systems (CISN-ShakeAlert, ElarmS-2) as it uses their P wave detections to trigger its processing; quality control runs continuously. We use a synthetic Hayward Fault earthquake scenario on real-time streams to demonstrate recovery of slip and magnitude. Reanalysis of theMw7.2 El Mayor-Cucapah earthquake tests the impact of dynamic motions on offset estimation. Using these test cases, we explore sensitivities to disturbances of a priori constraints (origin time, location, and fault strike/dip).
منابع مشابه
The 2014Mw 6.0 Napa earthquake, California: Observations from real-time GPS-enhanced earthquake early warning
Recently, progress has been made to demonstrate feasibility and benefits of including real-time GPS (rtGPS) in earthquake early warning and rapid response systems. Most concepts, however, have yet to be integrated into operational environments. The Berkeley Seismological Laboratory runs an rtGPS-based finite fault inversion scheme in real time. This system (G-larmS) detected the 2014Mw 6.0 Sout...
متن کاملApplication of real‐time GPS to earthquake early warning
[1] We explore the use of real‐time high‐rate GPS displacement data for earthquake early warning using 1 Hz displacement waveforms from the April 4, 2010, Mw 7.2 El Mayor‐Cucapah earthquake. We compare these data to those provided by the broadband velocity and accelerometer instrumentation of the Southern California Seismic Network. The unique information provided by the GPS‐based displacement ...
متن کاملApplication of real-time GPS to earthquake early warning in subduction and strike-slip environments
[1] We explore the application of GPS data to earthquake early warning and investigate whether the coseismic ground deformation can be used to provide fast and reliable magnitude estimations and ground shaking predictions. We use an algorithm to extract the permanent static offset fromGPS displacement time series and invert for the slip distribution on the fault plane, which is discretized into...
متن کاملPrecise Positioning of BDS, BDS/GPS: Implications for Tsunami Early Warning in South China Sea
Global Positioning System (GPS) has been proved to be a powerful tool for measuring co-seismic ground displacements with an application to seismic source inversion. Whereas most of the tsunamis are triggered by large earthquakes, GPS can contribute to the tsunami early warning system (TEWS) by helping to obtain tsunami source parameters in near real-time. Toward the end of 2012, the second phas...
متن کاملAdvances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami
The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world’s history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, sei...
متن کامل